Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1D Thermo-Fluid Dynamic Modelling of a S.I. Engine Exhaust System for the Prediction of Warm-Up and Emission Conversion during a NEDC Cycle

2005-09-11
2005-24-073
This work describes an experimental and numerical investigation of the thermal transient of i.c. engine exhaust systems. A prototype of exhaust system has been investigated during a NEDC cycle in two different configurations. Firstly an uncoated catalyst has been adopted to consider only the effect of the gas-wall heat transfer. The measurements have been repeated on the same exhaust system equipped with a coated catalyst to point out the contribution of the chemical reactions to the thermal transient of the system. The measured values have been compared to the predicted results carried out with a 1D thermo fluid dynamic code, developed in-house to account for the thermal transient of the system and the chemical reactions occurring in the catalyst.
Technical Paper

1D Unsteady Flows with Chemical Reactions in the Exhaust Duct-System of S.I. Engines: Predictions and Experiments

2001-03-05
2001-01-0939
This paper describes some recent advances of the research work concerning the 1D fluid dynamic modeling of unsteady reacting flows in s.i. engine pipe-systems, including pre-catalysts and main catalysts. The numerical model GASDYN developed in previous work has been further enhanced to enable the simulation of the catalyst. The main chemical reactions occurring in the wash-coat have been accounted in the model, considering the mass transfer between gas and solid phase. The oxidation of CO, C3H6, C3H8, H2 and reduction of NO, the steam-reforming reactions of C3H6, C3H8, the water-gas shift reaction of CO have been considered. Moreover, an oxygen-storage sub-model has been introduced, to account for the behavior of Cerium oxides. A detailed thermal model of the converter takes into account the heat released by the exothermic reactions as a source term in the heat transfer equations. The influence of the insulating mat is accounted.
Technical Paper

2 Development of Motorcycle Using Electronic Controlled Continuously Variable Transmission

2002-10-29
2002-32-1771
Recently, society has demanded better performance from motorcycle regarding comfort, fuel economy, exhaust emission, and safety, in addition to traditional performance indicators. In the development of power trains, therefore, compact and lightweight hardware with improved transmission efficiency has been introduced, along with system technologies that optimize the engine revolution speed range and reduction ratio to suit driving conditions. This approach focuses on improving overall efficiency and addressing the issues of easier drivability and greater active safety. Electronic Controlled Continuously Variable Transmission (ECCVT) with high transmission efficiency is characterized by a Dry Hybrid Belt, in addition to an electronic controlled DC motor-driven shift mechanism, and an Electronic Controlled wet multi-plates Clutch (ECC).
Technical Paper

2-Color Thermometry Experiments and High-Speed Imaging of Multi-Mode Diesel Engine Combustion

2005-10-24
2005-01-3842
Although in-cylinder optical diagnostics have provided significant understanding of conventional diesel combustion, most alternative combustion strategies have not yet been explored to the same extent. In an effort to build the knowledge base for alternative low-temperature combustion strategies, this paper presents a comparison of three alternative low-temperature combustion strategies to two high-temperature conventional diesel combustion conditions. The baseline conditions, representative of conventional high-temperature diesel combustion, have either a short or a long ignition delay. The other three conditions are representative of some alternative combustion strategies, employing significant charge-gas dilution along with either early or late fuel injection, or a combination of both (double-injection).
Technical Paper

2-D Imaging of Fuel Vapor Concentration in a Diesel Spray via Exciplex-Based Fluorescence Technique

1993-10-01
932652
To measure the fuel vapor concentration in an unsteady evaporating spray injected into nitrogen atmosphere, the exciplex-forming method, which produces spectrally separated fluorescence from the liquid and vapor phase, was applied in this study. Two experiments were conducted to investigate the qualitative and quantitative applicability of the technique in a high temperature and high pressure atmosphere during the fuel injection period. One is to examine the thermal decomposition of TMPD dopant at a high temperature and a high pressure nitrogen atmosphere during a short period of time. The other is to calibrate the relationship between fluorescence intensity and vapor concentration of TMPD at different vapor temperatures. And then, the qualitative measurement of fuel vapor concentration distributions in diesel sprays was made by applying the technique.
Technical Paper

2-D Imaging of Soot Formation Process in a Transient Spray Flame by Laser-induced Fluorescence and Incandescence Techniques

2002-10-21
2002-01-2669
In order to investigate the soot formation process in a diesel spray flame, simultaneous imaging of soot precursor and soot particles in a transient spray flame achieved in a rapid compression machine was conducted by laser-induced fluorescence (LIF) and by laser-induced incandescence (LII) techniques. The 3rd harmonic (355nm) and the fundamental (1064nm) laser pulses from an Nd:YAG laser, between which a delay of 44ns was imposed by 13.3m of optical path difference, were used to excite LIF from soot precursor and LII from soot particles in the spray flame. The LIF and the LII were separately imaged by two image-intensified CCD cameras with identical detection wavelength of 400nm and bandwidth of 80nm. The LIF from soot precursor was mainly located in the central region of the spray flame between 40 and 55mm (270 to 370 times nozzle orifice diameter d0) from the nozzle orifice. The LII from soot particles was observed to surround the soot precursor LIF region and to extend downstream.
Journal Article

2-D Internal EGR Distribution Measurements in an Engine by Laser-Induced Fluorescence

2013-04-08
2013-01-0556
A novel diagnostic technique named a “Tracer-Producing LIF technique” which enables 2-dimensional measurement of an internal EGR within an engine cylinder, has been developed. The main feature of this technique is the utilization of a fuel additive that does not itself emit an LIF signal by irradiation of UV-light but whose combustion products radiate strong LIF emissions by UV-light irradiation. Internal EGR behaviors can be measured by observing LIF images that are excited by a UV-laser sheet. Firstly, principles of this technique were confirmed and fuel additives were selected. Then, the “Tracer-Producing LIF technique” was applied to an optically accessible single-cylinder gasoline engine in which the entire pent-roof area can be observed from the side of the engine. The internal EGR behaviors were measured through the entire engine cycle, from intake to exhaust.
Technical Paper

2-D Soot Visualization in Unsteady Spray Flame by means of Laser Sheet Scattering Technique

1991-02-01
910223
The two-dimensional distribution of a soot cloud in an unsteady spray flame in a rapid compression machine(RCM) was visualized using the laser sheet scattering technique. A 40 mm x 50 mm cross section on the flame axis was illuminated by a thin laser sheet from a single pulsed Nd:YAG laser(wavelength 532 nm). Scattered light from soot particles was taken by a CCD camera via a high speed gated image intensifier. The temporal variation of the scattered light images were presented with the injection pressure as a parameter. The results showed that scattered light was intense near the periphery of the flame tip and that the scattered light becomes weaker significantly and disappears fast after the end of injection as injection pressure is increased. This technique was also applied to the visualization of the two-dimensional distribution of liquid droplets in the non-evaporating spray to correlate it with the soot concentration distribution.
Technical Paper

2-D Visualization of Liquid Fuel injection in an Internal Combustion Engine

1987-11-01
872074
A sheet of laser light from a frequency-doubled Nd-YAG laser (λ = 532 nm) approximately 150 μm thick is shone through the cylinder of a single cylinder internal combustion engine. The light scattered by the fuel spray is collected through a quartz window in the cylinder and is imaged on a 100 × 100 diode array camera. The signal from the diode array is then sent to a microcomputer for background subtraction and image enhancement. The laser pulse is synchronized with the crank shaft of the engine so that a picture of the spray distribution within the engine at different times during injection and the penetration and development of the spray may be observed. The extent of the spray at different positions within the chamber is determined by varying the position and angle of the laser sheet with respect to the piston and the injector.
Technical Paper

2-D Visualization of a Hollow-Cone Spray in a Cup-in-Head, Ported, I.C. Engine

1989-02-01
890315
Two dimensional visualization of a pulsating, hollow-cone spray was performed in a motored, ported, high swirl, cup-in-head I.C. engine, using exciplex-forming dopants in the fuel, which produced spectrally separated fluorescence from the liquid and vapor phases. Illumination was by a laser sheet approximately 200 µm thick from a frequency tripled Nd:YAG laser, and image acquisition was by a 100 × 100 pixel diode array camera interfaced to a personal computer. Liquid and vapor phase fuel distributions are reported for engine speeds of 800 rpm and 1600 rpm, over a crankangle range spanning the injection event and subsequent evaporation and mixing. The beginning of injection was at 33° BTDC at 800 rpm and 47° BTDC at 1600 rpm. At 800 rpm, the spray angle is narrower than the 60° poppet angle, as expected from previous observations in a near-quiescent spray chamber.
Technical Paper

2-D Visualization of liquid and Vapor Fuel in an I.C. Engine

1988-02-01
880521
A sheet of laser light from a frequency tripled Nd-YAG laser approximately 200μm thick is shone through the combustion chamber of a single cylinder, direct injection internal combustion engine. The injected decane contains exciplex—forming dopants which produce spectrally separated fluorescence from the liquid and vapor phases. The fluorescence signal is collected through a quartz window in the cylinder head and is imaged onto a diode array camera. The camera is interfaced to a microcomputer for data acquisition and processing. The laser and camera are synchronized with the crankshaft of the engine so that 2—D images of the liquid and vapor phase fuel distributions can be obtained at different times during the engine cycle. Results are presented at 600, 1200 and 1800 rpm, and from the beginning to just after the end of injection. The liquid fuel traverses the cylinder in a straight line in the form of a narrow cone, but does not reach the far wall in the plane of the laser sheet.
Technical Paper

2-Stroke CAI Operation on a Poppet Valve DI Engine Fuelled with Gasoline and its Blends with Ethanol

2013-04-08
2013-01-1674
Controlled Auto Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), is one of the most promising combustion technologies to reduce the fuel consumption and NOx emissions. Currently, CAI combustion is constrained at part load operation conditions because of misfire at low load and knocking combustion at high load, and the lack of effective means to control the combustion process. Extending its operating range including high load boundary towards full load and low load boundary towards idle in order to allow the CAI engine to meet the demand of whole vehicle driving cycles, has become one of the key issues facing the industrialisation of CAI/HCCI technology. Furthermore, this combustion mode should be compatible with different fuels, and can switch back to conventional spark ignition operation when necessary. In this paper, the CAI operation is demonstrated on a 2-stroke gasoline direct injection (GDI) engine equipped with a poppet valve train.
Journal Article

2-Stroke High Speed Diesel Engines for Light Aircraft

2011-09-11
2011-24-0089
The paper describes a numerical study, supported by experiments, on light aircraft 2-Stroke Direct Injected Diesel engines, typically rated up to 110 kW (corresponding to about 150 imperial HP). The engines must be as light as possible and they are to be directly coupled to the propeller, without reduction drive. The ensuing main design constraints are: i) in-cylinder peak pressure as low as possible (typically, no more than 120 bar); ii) maximum rotational speed limited to 2600 rpm. As far as exhaust emissions are concerned, piston aircraft engines remain unregulated but lack of visible smoke is a customer requirement, so that a value of 1 is assumed as maximum Smoke number. For the reasons clarified in the paper, only three cylinder in line engines are investigated. Reference is made to two types of scavenging and combustion systems, designed by the authors with the assistance of state-of-the-art CFD tools and described in detail in a parallel paper.
Technical Paper

2-step Variable Valve Actuation: System Optimization and Integration on an SI Engine

2006-04-03
2006-01-0040
2-step variable valve actuation using early-intake valve closing is a strategy for high fuel economy on spark-ignited gasoline engines. Two discrete valve-lift profiles are used with continuously variable cam phasing. 2-step VVA systems are attractive because of their low cost/benefit, relative simplicity, and ease-of-packaging on new and existing engines. A 2-step VVA system was designed and integrated on a 4-valve-per-cylinder 4.2L line-6 engine. Simulation tools were used to develop valve lift profiles for high fuel economy and low NOx emissions. The intake lift profiles had equal lift for both valves and were designed for high airflow & residual capacity in order to minimize valvetrain switching during the EPA drive cycle. It was determined that an enhanced combustion system was needed to maximize fuel economy benefit with the selected valve lift profiles. A flow-efficient chamber mask was developed to increase in-cylinder tumble motion and combustion rates.
Technical Paper

2000 University of Maryland FutureTruck Design Description

2001-03-05
2001-01-0681
The University of Maryland team converted a model year 2000 Chevrolet Suburban to an ethanol-fueled hybrid-electric vehicle (HEV) and tied for first place overall in the 2000 FutureTruck competition. Competition goals include a two-thirds reduction of greenhouse gas (GHG) emissions, a reduction of exhaust emissions to meet California ultra-low emissions vehicle (ULEV) Tier II standards, and an increase in fuel economy. These goals must be met without compromising the performance, amenities, safety, or ease of manufacture of the stock Suburban. The University of Maryland FutureTruck, Proteus, addresses the competition goals with a powertrain consisting of a General Motors 3.8-L V6 engine, a 75-kW (100 hp) SatCon electric motor, and a 336-V battery pack. Additionally, Proteus incorporates several emissions-reducing and energy-saving modifications; an advanced control strategy that is implemented through use of an on-board computer and an innovative hybrid-electric drive train.
Book

2013 and 2014 Passenger Car Yearbook

2013-11-25
This set consists of two books, 2013 Passenger Car Yearbook, and 2014 Passenger Car Yearbook. Both include articles that were written by the award-winning editors of Automotive Engineering International. Both books detail the key engineering developments in the passenger vehicle industry of that year. Each new car model is profiled in its own chapter with one or more articles.
Book

2018 Ultimate GD&T Pocket Guide 2nd Ed

2020-11-23
The 2018 Ultimate GD&T Pocket Guide explains the most common rules, symbols, and concepts used in geometric dimensioning and tolerancing. This one-of-a-kind reference guide includes more than 100 detailed examples to illustrate concepts. Numerous charts for quick reference provide explanations of each GD&T symbol, modifier, and more. This valuable on-the-job resource clarifies how to interpret standard-compliant technical drawings that use ASME Y14.5-2018.

2022 Thermal Management Systems Symposium

2024-05-11
Thermal Management Systems Symposium industry discusses latest regulatory impacts, applications to reduce engine emissions, conserve energy, reduce noise, improve the cabin environment, increase overall vehicle performance passenger, commercial vehicle industry.
Technical Paper

2022-Global Kinetic Modeling of a Commercial DOC Based on a Reduced Synthetic Gas Bench Protocol

2022-03-29
2022-01-0558
Various techniques are constantly being devised to accelerate model generation leading to shorter product development cycle. This work proposes and implements a reduced synthetic gas bench (SGB) test protocol for a commercial Pt-Pd diesel oxidation catalyst (DOC) that can be used to develop global reaction kinetics. The kinetics thus developed were implemented in a 1D model to predict DOC emissions accurately over a wide operating window. Hydrocarbons (HCs) in the exhaust were categorized as Propylene (C3H6) representing partially oxidized hydrocarbons and n-Decane (C10H22) representing unburnt fuel. Test protocols were defined using the order of inhibition of the various species present in the exhaust, namely, CO, NOx (NO+NO2) and HC for the specific reaction under consideration. The oxidation reactions for CO and HCs were found to be inhibited competitively by CO and HCs; both the NOx species inhibited these reactions to the same extent.

2023 AeroTech®

2024-05-11
Join industry innovators, thought-leaders, and high-tech professionals worldwide to celebrate aerospace achievements
X